The measurement of jet cross sections with the ALICE detector is of twofold interest. First, the study of jet production in pp collisions provides a test for perturbative Quantum Chromo Dynamics (pQCD). Second, jets measured in heavy-ion collisions are a well-established tool to probe the Quark Gluon Plasma (QGP). We can obtain a reference for heavy ion collisions from the measurement of the pp collisions.

ALICE experiment

ALICE is one of the major LHC experiments, with as main goal to study the QGP. In this study, the ALICE V0 detector is used to trigger minimum bias events. The central barrel charged particle tracking system is used to detect charged particles. The tracking system consists of a Time Projection Chamber (TPC) and Inner Tracking System (ITS)

- **V0**
 - 32+32 scintillators
 - Acceptance: 2.8<\eta<5.1 (V0A)
 - 3.7<\eta<-1.7 (V0C)

- **TPC (Time projection chamber)**
 - Filled with Ar-CO₂ (9:1)
 - Max drift time: 92 μs
 - Acceptance (Full tracking): |\eta|<0.9

- **ITS**
 - Consists of 3 type silicon detectors
 - Silicon Pixel Detector (SPD)
 - Silicon Drift Detector (SDD)
 - Silicon Strip Detector (SSD)
 - Acceptance (Full tracking w/ TPC): |\eta|<0.9

Results

- The charged jet cross sections are well described by POWHEG NLO calculations.

Analysis details

- For this study, 25.5 M minimum bias events are analyzed.
- Jet reconstruction: Anti-\(k_T\) algorithm\(^1\) implemented in the FastJet\(^2\).
- Track selection: Charged track \(p_T > 0.15 \text{ GeV}/c\), a uniform efficiency in \(\eta\) and \(\varphi\).
- The measurements are corrected to the particle level.
- Figure 2 shows the jet response matrix of true\(p_T^{\text{jet,ch}}\) versus reconstructed\(p_T^{\text{jet,ch}}\) jet \(p_T\) from a full detector simulation, used for the Singular Value Decomposition unfolding method\(^3\).
- The validity of the unfolding is demonstrated by an MC closure test shown in Figure 3. Good agreement between the truth and unfolded spectrum is found.

Sources of systematic uncertainties:

- Tracking efficiency
- Tracking resolution
- Secondary contribution
- UE subtraction
- Unfolding
- Cross section normalization

Summary and prospects

- Charged jet cross sections for \(R=0.2\) and \(R = 0.4\) are presented.
- The cross sections are well described by POWHEG NLO calculations.
- The charged jet cross section ratio is well described by PYTHIA6, PYTHIA8 and POWHEG.
- The measurements serve as a reference for PbPb collisions at the same \(v_s^{NN}\).
- The ALICE calorimeters will be included to extend the analysis to full jets.